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Motivation

= To obtain reliable estimates of olive trees in Navarra (Spain)




= Small and irregular plots —> domestic consumption

» Olive oil is very important in the Mediterranean diet
= Development of a modern industry

= Sampling process very difficult and expensive

= Design based estimators are not appropriate

= Model based methods — Small Area Estimation (Rao, Wiley
2003)



= Sample: 39 segments of 4 hectares in 8 non irrigated areas

m Plots very irregular and different in size and dispersion



sampled segments

study domain

sampled crop

= Irregular study domain
= Size of sample segments limited by satellite images

s Transformation of data



= To provide estimates of the small area totals of surface occu-

pied by olive trees
= To provide standard errors of the small area estimators
= To include weights to correct for heteroscedasticity

= To include sampling weights to obtain design-consistent esti-

mators

= To compare the performance of different small area models



Introduction

» Increasing demand for precise estimates in domains with small

sample size

e To produce reliable estimates

e To assess the estimation error

e Specificity: borrow information
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%uxiliary information {

Related areas
Past data




» Agricultural applications

e Linear Mixed Models (Battese, Harter and Fuller, JASA 1988)
e Auxiliary information: Data provided by satellite images

e Regular segments



Heteroscedastic Unit Level Model

Yij = Po+ Bz +wyy, t=1,...,¢, j5=1,...,n

s ujj=v;+ey, v~ N(0,02)y e;~ N(O,o0°/c;)

= ; are assumed to be independent of the random errors ¢€;;

= 9/;; : number of hectares of olive trees in the jth segment of the ith area
s 7; is the number of sampled segments

= Z;; : number of classified hectares of olive trees in the jth segment of the

ith area

C;j : weights to account for heteroscedasticity



= In matrix form

Y =XB+7Zv+e v~ N0,0IL), €~ N0,c°C )|

» Quantity of interest

gz(p) — )_(;(p)ﬁ TV = 60 + 6137 —|_ (%]

» Predictor

?jz'c — X;@)/Bc + Vje = X /3 + %c(yzc — ; /Bc)

Yic | is the plug-in estimador of | V;. = 03 / (05 + 02 /¢i)




Area Level Model

= Extension of the Prasad and Rao (Survey M., 1999) area level model

= Combining Equation (1) and the design estimators

T _— nl .. .. ~ . _— nl .. ..
Yiw = Zj:l wzyyma Xiw = Zj:l wzgxw

where w;; = w;;/ Z?;l w;; and w;; are the sampling weights. Then,

Y,=X,3+V+E€E, VvV~ N(0, agIt), €, ~ N(O, 0253)

o = diag(e%); 0% = wh/cy, i=1,...,1

J
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» Predictor

AN

ﬁiwc — )_(;(p)lgwc + r&i’wc — }_(;(p)lgwc + f%wc(gzw - X;wﬁwc)

*Ayiwc is the plug-in estimador of | Y,y = 05 / (012) aF 0252-26)

» The estimator is design-consistent assuming

(52-26—>0 as [n; — oo
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Extended Pseudo-EBLUP

Extension of the You and Rao (Canadian J. Statistics, 2002) Pseudo-EBLUP

Steps

. Assume (3, O?, 05 are known in the area level model (2). Then, the BLUP

1S
giwc — )_(;(p)/B + /Yiwc<giw - }_(;'w )

. The variance components are estimated from the heteroscedastic unit level
model (1)
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3. Obtain the BLUP of v;,,. from Expression(2)

ﬁiwc — Viwc(giw — X;w )

Solving the weighted estimating equations

Z@ 12 L WijCiiXig |Yij — Uzwc(ﬁa )] 0

it is obtained

~+

n; - t n;
/chYR — E § z]Cz]Xu XZ] fAYiwc)_czw § § @ZJCZJij Yij — ’Yzwcyzw)

=1 j=1 =1 j=1
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» Predictor

AN AN

ij'chR — X;(p)lgchR + ’%wc(gzw - }_('/iwlgchR)

» The estimator is design-consistent assuming

52-26—>0 as [n; — oo

14



Variance Components Estimation

= Fitting of constants (Searle, Casella and McCullogh, Wiley 1992).

t n;
22 1 22
e = noi—k E , E :Cw%’

i=1 j=1

é;; : weighted regression of Y on X introducing v as a dummy

variable

A0 E E ~2
O-'U — n*c C'lj Z] n - - 1)0-6 70

=1 j=1

5;; : residuals from the weighted regression of Y on X
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Mean Squared Error

» Kackar and Harville, JASA 1984, showed, under normality

MSE[ﬁz(p)(&za Y)] — MSE[@@)(O‘Q, Y)] + E[?jz(p)(a-27 Y) - ﬁz(p)(a-zv Y)]Q

= An adequate estimator (Prasad and Rao, JASA 1990)

MSE[t;(6%,Y)] = g1:c(62) + g2:c(67) + 2g3i0(67)

= ¢y is associated to random effects
= ¢y is associated to fixed effects

m g3 is associated to variance components
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Application

= Complex project: several scientific disciplines

= Study domain determined by a Navarra map and aerial photos
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= Auxiliary information: satellite images

e Two kind of images: panchromatic and multispectral

e New methods of merging images
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Sampled Segments
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Small Areas

» Variability increases with sample size

= Weights: ¢;; =1/\/n;,t=1,....,t; j=1,...
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Models

Model 1: Homoscedastic unit level model, ¢;; = 1, w;; = 1.

Model 2: Heteroscedastic unit level model ¢;; = 1/,/n;, w;; = 1.

Model 3: Area level model (Prasad y Rao, Survey Methodology, 1999).

Cij = 1, ’UNJZ'j = Nz/nz.

Modelo 4: Area level model. c¢;; = 1/\/n;, Wi = N;/n;.

Model 5: Pseudo-EBLUP estimator (You y Rao, Canadian J. Statistics, 2002).

Cij = 1, Wi; = Nz/nz.

Modelo 6: Extended Pseudo-EBLUP . Cij = 1/\/71_2, ZIJZ']' = NZ/TLZ.
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Table 1. Results for Unit Level Models

Model 1 (Cij = 1)

Model 2 (Cij = 1/\/777)

Area | n; N; S; W s.e. c.v Uiy s.e. c.v
S33| 1 32 26.560 10.380 | 3.389 | 0.326 13.593 | 3.598 | 0.265
S38 | 2 97 87.199 34.839 | 10.455 | 0.300 39.940 | 9.682 | 0.242
S39| 2| 115| 170.224 31.543 | 12.516 | 0.397 26.525 | 11.491 | 0.433
S43 | 2 81 67.010 31.557 | 8.722 | 0.276 40.053 | 8.090  0.202
S34 | 4| 227 | 226.286 67.084 | 24.301 | 0.362 50.143 | 20.112 | 0.401
S36| 6| 284 | 280.085| 125.992 | 29.460 | 0.234 | 135.801 | 24.075 | 0.177
S35 (10| 697 | 791.867 | 400.333 | 63.608 | 0.159 | 413.477 | 51.769 | 0.125
S44 |12 | 731 | 935.936 | 347.611 | 64.120 | 0.184 | 349.560 | 53.449  0.153

Total | 39 | 2264 | 2585.168 | 1049.339 | 99.846 | 0.095 | 1069.092 | 82.615 | 0.077
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Table 2. Results for Area Level Models

Model 3 (Cij = 1)

Model 4 (Cij = 1/\/71_1)

Area

n; | N; S; Ui s.e. c.v T s.e. c.v

S33 | 1 32 26.560 9.997 3.927 | 0.393 13.303 | 3.941 | 0.296
S38 | 2 97 87.199 33.989 | 11.345  0.334 39.623 | 9.841 0.248
S39 | 2| 115| 170.224 30.367 | 13.923 | 0.458 26.098 | 11.732  0.450
S43 | 2 81 67.010 30.860 9.441 | 0.306 39.767 | 8.243 | 0.207
S34 | 4| 227 | 226.286 65.428 | 25.776 | 0.394 49.231 | 20.735 | 0.421
S36| 6| 284 | 280.085 | 123.584 | 31.999 | 0.259 | 133.139 | 28.227 | 0.212
S35 10| 697 | 791.867 | 397.182 | 65.674 | 0.165 | 409.336 | 56.620 | 0.138
S44 | 12| 731 | 935.936 | 342.442 | 69.500 | 0.203 | 343.391 | 63.430 | 0.185
Total | 39 | 2264 | 2585.168 | 1033.851 | 106.107 | 0.103 | 1053.889 | 93.669 | 0.089
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Table 3. Results for Pseudo-EBLUP Estimators

Model 5 (Cij = 1)

Model 6 (Cij = 1/\/71_1)

Area

n; | N; S; Ui s.e. c.v T s.e. c.v

S33 | 1 32 26.560 9.965 3.403 | 0.342 13.213 | 3.605 | 0.273
S38 | 2 97 87.199 33.744 | 10.487 | 0.311 39.085 | 9.695 | 0.248
S39 | 2| 115| 170.224 30.203 | 12.557 | 0.416 25.499 | 11.506 | 0.451
S43 | 2 81 67.010 30.646 8.749 | 0.285 39.334 | 8.101 0.206
S34 | 4| 227 | 226.286 64.914 | 24.355 | 0.375 48.446 | 20.136 | 0.416
S36| 6| 284 | 280.085 | 123.481 | 29.522 | 0.239 | 133.524 | 24.119 | 0.181
S35 10| 697 | 791.867 | 395.825 | 63.696 | 0.161 | 409.161 | 51.836 | 0.127
S44 |12 | 731 | 935.936 | 342.791 | 64.228 | 0.187 | 344.797 | 53.542 | 0.155
Total | 39 | 2264 | 2585.168 | 1031.569 | 100.015 | 0.097 | 1053.060  82.740 | 0.079
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» Diagnosis: it is very important to check model hypothesis

e Significance of the variance components: a parametric bootstrap test is

conducted

e Normality: it is a necessary condition to estimate the mean squared

error

e There are some simulation studies to show the robustness of the mod-
els to small deviations from normality when the variance components

are estimated by the fitting of constants method

» [t is possible to use standard software such as SAS, S-PLUS, R to fit small
area models, but extra programming is needed to obtain the small area

predictor and the mean squared error
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Table 4. Variance components estimates, their standard errors and parametric bootstrap test

p-value
Fitting of Constants
Model 62 | s.e.(62) 62 | s.e.(62) | Bootstrap p-value
Model 1,3 and 5 | 0.051 0.013 | 0.005 0.010 0.164
Model 2,4 and 6 | 0.016 0.004 | 0.015 0.013 0.019

Table 5. p-value of the Sha

piro-Wilk statistic for testing the normality of the residuals

Shapiro-Wilk p-value

Model | Transformed residuals | Eblup residuals
Model 1 0.998 0.993
Model 2 0.857 0.989
Model 3 0.704 —
Model 4 0.862 —
Model 5 — 0.993
Model 6 — 0.994
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Unit level models. Boxplots of residuals

Model 1
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Model 5

Pseudo-EBLUP estimators. Boxplots of residuals

Model 6
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Conclusions

m There is a claer necessity of using specific methodologies to
obtain accurate estimates in small areas

= We provide small area model that use model weights to cor-
rect for heteroscedasticity and sampling weights to obtain de-
sign consistency.

= \We obtain good results in the real application considered here.
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